
PYTHON PERFORMANCE AT SCALE
Making Python Faster at Instagram

PYTHON PERFORMANCE AT SCALE

2

1 Successful Improvements

2 Experimental Work

3 Results and What's Next

PYTHON AT INSTAGRAM
A super fast review!

MONOLITHIC WEB APPLICATION

4

3.8

MONOLITHIC WEB APPLICATION

5

Parent process

Child Child Child Child Child Child Child Child

PROFILING

• Profiling data collected from production hosts
• Linux perf sampling profiler
• Tweaks for better profiling data (async call stacks)
• Provides insight at Python and C level

6

• Metrics
• RPS - Requests per Second under Load
• Not stable over time, but good for short-term measurements of wins/losses

SUCCESSFUL IMPROVEMENTS
https://github.com/facebookincubator/cinder

Parent process

IMMORTAL OBJECTS

8

Child Child Child Child Child Child Child Child

Increasing shared memory

• Worker processes share read-only memory with parent process
• Becomes private to the worker process if the worker process writes to it

IMMORTAL OBJECTS

• Large source of writes is from reference counts to objects
• Uses a high-bit in ref count to mark objects as immortal
• Updates Py_INCREF/Py_DECREF to check for bit, and not update ref count

• A significant amount of overhead, but the memory savings make it worth it in our workload

9

• Pre-fork the heap is collected and traversed
• All living objects are marked as immortal
• 5% win in production

ASYNC I/O

• Send/Receive values without StopIteration
• Creating exception objects was a major source of overhead
• Simple benchmark is 1.6x times faster

10

We do a lot of it!

• Upstreamed to Python 3.10
• bpo-41756, bpo-42085

• 5% win in production

ASYNC I/O

• Eager Evaluation
• "await some_call()" will immediately run function

11

We do a lot of it!

• If call completes without blocking:
• Coroutine creation is elided
• A "wait handle" is returned

• One singleton instance is used, as the handle is immediately consumed
• Uses a new vectorcall flag to indicate a call is awaited
• asyncio.gather also checks flag, and avoids task creation/scheduling overhead
• 3% win in production

INLINE CACHING OF BYTE CODE

• Hot methods get hidden copy of byte code ("shadow code") and caches
• Opcodes get replaced with more specific versions
• Over a 5% win in production

12

"shadow byte code"

typedef struct _PyShadowCode {
 PyObject ***globals;
 Py_ssize_t globals_size;

 _ShadowCache l1_cache;

 _PyShadow_InstanceAttrEntry ***polymorphic_caches;
 Py_ssize_t polymorphic_caches_size;

 Py_ssize_t update_count;
 Py_ssize_t len;

 _Py_CODEUNIT code[];
} _PyShadowCode;

INLINE CACHING OF BYTE CODE

13

"shadow byte code"

LOAD_ATTR_DICT_DESCR

LOAD_ATTR_NO_DICT_DESCR

LOAD_ATTR_DICT_NO_DESCR

LOAD_ATTR_SPLIT_DICT

LOAD_ATTR_SPLIT_DICT_DESCR

LOAD_ATTR_TYPE

LOAD_ATTR_MODULE

LOAD_ATTR_SLOT

LOAD_ATTR_POLYMORPHIC

LOAD_ATTR

STORE_ATTR_DICT

STORE_ATTR_SPLIT_DICT

STORE_ATTR_DESCR

STORE_ATTR_SLOT

STORE_ATTR

BINARY_SUBSCR_LIST

BINARY_SUBSCR_TUPLE

BINARY_SUBSCR_DICT

BINARY_SUBSCR_DICT_STR

BINARY_SUBSCR

BINARY_SUBSCR_TUPLE_CONST_INT
LOAD_GLOBAL

LOAD_GLOBAL_CACHED

Module

X = 1

def max(*args): return min(*args)

def f():

 print(max(X, 42))

• Provides updates to globals, builtins when modified

Builtins:

min, max, type, int, etc...

DICTIONARY WATCHERS

14

min

X

max

• Led to an additional 5% win when integrated with shadow byte
code

• Re-uses existing version tag to mark watched dictionaries
• dictionaries marked with low bit in dictionary version tag
• dictionary versions bumped by 2

TARGETED OPTIMIZATIONS

• Fixed __builtins__ (1%)
• Technically a CPython implementation detail

15

TARGETED OPTIMIZATIONS

• PyType_Lookup
• bpo-43452
• Up to 1.19x faster on nbody, minimum 1.03x improvement across dozens of benchmarks
• No measurable difference in production

16

TARGETED OPTIMIZATIONS

• ThreadState lookup avoidance
• Prefetching (~1%)

• Frame creation

17

BUILD SYSTEM IMPROVEMENTS

• Profile Guided Optimizations (PGO) + (Thin)LTO
• Binary Optimization and Layout Tool (BOLT) - 4%

• Currently training against production hosts
• Huge Pages - ~3%

• Helps reduce iTLB misses

18

EXPERIMENTAL CHANGES
JIT, Static Python, Pyro

JIT

• Custom method at a time JIT
• Nearly full coverage for all opcodes

• Unsupported opcodes are rare, or not used in methods (e.g. IMPORT_STAR)

20

JIT

• Front end lowers to HIR
• SSA
• Ref count insertion
• Other optimization passes

21

def f(self):

 self.x = 1

fun __main__:f {

 bb 0 {

 v0 = LoadArg<0; "self">

 v1 = LoadConst<LongExact[1]>

 v0 = CheckVar<0; "self"> v0

 v2 = StoreAttr<0; "x"> v0 v1

 v3 = LoadConst<NoneType>

 Return v3

 }

}

fun __main__:f {

 bb 0 {

 v4:Object = LoadArg<0; "self">

 v5:LongExact[1] = LoadConst<LongExact[1]>

 v7:NoneType = StoreAttr<0; "x"> v4 v5

 v8:NoneType = LoadConst<NoneType>

 Incref v8

 Return v8

 }

}

Front End

JIT

• Backend lowers to LIR
• Register allocation
• Targeted optimizations while lowering:

• Direct dispatch to known functions
• asmjit used for x64 code generation

22

def f(self):

 self.x = 1

BB %0 - succs: %3

 %1:Object = Bind R10:Object

 %2:Object = Bind R11:Object

v4:Object = LoadArg<0; "self">

 %4:Object = Bind RDI:Object

v5:LongExact[1] = LoadConst<LongExact[1]>

 %5:Object = Move 0x7f65cce1f1a0:Object

v7:NoneType = StoreAttr<0; "x"> v4 v5

 %6:Object = Call ...

v8:NoneType = LoadConst<NoneType>

 %8:Object = Move 0x7f65ccdef900:Object

Incref v8

 %9:Object = Move [%8:Object]:Object

 BitTest %9:Object, 60(0x3c):Object

 BranchB

Return v8

 Return %8:Object

Back End

STATIC PYTHON

Provides similar performance gains to MyPyC or Cython, but with a
normal Python programming experience, and no extra compile steps.

Source Loader
Loads files marked with import
__static__, supports cross
module compilation

Byte Codes
Opcodes like
INVOKE_FUNCTION,
LOAD_FIELD, which work on
metadata

PEP 484 Annotations
Normal annotations are
leveraged, several new types like
int64 are defined.

Interop
Type safety is enforced at
boundaries of untyped Python,
and elided within static Python

Static Compiler
Uses normal Python AST module,
written in Python, based upon
updated Python 2.x "compiler"
package

STATIC PYTHON
from __future__ import annotations
import __static__
from __static__ import int64

from typing import Final, Optional
MUL: Final[int] = 1

class C:
 def __init__(self, next: Optional[C] = None):
 self.next = next
 if next is not None:
 self.len: int64 = next.len * int64(MUL)

Type annotation used for primitive type

Final constants can be inlined by the compiler

Indicator that static loader should be used

Fields are transformed to typed slots:
 __slots__ = ('len', 'next')
 __slot_types__ = {"len": ('__static__', 'int64'),
 "next": ('__main__', 'C', '?')}

Arguments are type checked:
CHECK_ARGS ((0, ('__main__', 'C'),
 1, ('__main__', 'C', '?')))

Field stores are generated:
STORE_FIELD ('__main__', 'C', 'next')

Primitive math is generated:
PRIMITIVE_LOAD_CONST 1
PRIMITIVE_BINARY_OP 2 (multiply)

PYRO

• Experimental, from-scratch runtime, reusing standard library

25

• Differences from CPython:
• Compacting GC
• Tagged Pointers
• Hidden Classes

• C-API emulated for PEP-384 subset
• Open questions:

• Adapting to PEP-384 at scale
• Performance of API emulation

WHAT'S NEXT
Upstreaming, Results

WHAT'S NEXT?

27

1 More Upstreaming

2 Our Results

RESULTS

• Production improvements: 20-30%
• Harder to measure as changes are incremental over time

28

BENCHMARKS

29

richards
logging_silent

deltablue
raytrace

scimark_sor
float

unpickle_pure_python
scimark_lu

pickle_pure_python
mako

chameleon
logging_simple

scimark_monte_carlo
go

pyflate
logging_format

unpack_sequence
spectral_norm
regex_compile

genshi_text
xml_etree_process

chaos
scimark_fft

xml_etree_generate

4x 2x 1.5 Baseline 3.8

Cinder Cinder JIT Cinder JIT noframe

Normalized time, lower is better

Cinder wins

BENCHMARKS

30

scim_sprse_mat_mult
hexiom

genshi_xml
pathlib

fannkuch
tornado_http

meteor_contest
sqlite_synth

telco
pickle_list

unpickle
pickle_dict

unpickle_list
regex_v8

crypto_pyaes
json_loads

xml_etree_iterparse
pickle

xml_etree_parse
json_dumps
dulwich_log

50
2x

1.5 Baseline 3.8

Cinder Cinder JIT Cinder JIT noframe

Normalized time, lower is better

Cinder wins / even

BENCHMARKS

31

pidigits

regex_dna

regex_effbot

sqlalchemy_declarative

nbody

sqlalchemy_imperative

nqueens

2to3

python_startup

python_startup_no_site

django_template

sympy_expand

sympy_integrate

sympy_str

sympy_sum

2x worse 4x worse 5x worse100
Baseline 3.8

Cinder Cinder JIT Cinder JIT noframe

Startup is 20x worse

Normalized time, lower is better

Cinder losses

BENCHMARK IN DEPTH
Deep dive - Richards

32

0

0.275

0.55

0.825

1.1

Richards time, lower is better

0.13

0.31

0.45

0.96
1.03

Baseline 3.8
Cinder
Cinder JIT
Cinder JIT noframe
Static Richards

BUILD CHANGES
Tweaking the build process for massive wins

33

Title

0

1.5

3

4.5

6

% CPU Savings

5.9

4.9

2.98

1

Python PGO w/ Inline Caching
Python PGO trained with asyncio & coroutines
uWSGI PGO/BOLT trained with Inline Caching
uWSGI PGO/BOLT trained with asyncio & coroutines

34

https://github.com/facebookincubator/cinder

And we're hiring!

https://github.com/facebookincubator/cinder

